Sunday 22 October 2017

Problemer Enkelt Moving Average Metoden


De 7 fallgruver med bevegelige gjennomsnittsverdier Et glidende gjennomsnitt er gjennomsnittsprisen på en sikkerhet over en angitt tidsperiode. Analytikere bruker ofte bevegelige gjennomsnitt som et analytisk verktøy for å gjøre det lettere å følge markedstrender, ettersom verdipapirene beveger seg opp og ned. Flytte gjennomsnitt kan etablere trender og måle momentum. Derfor kan de brukes til å indikere når en investor bør kjøpe eller selge en bestemt sikkerhet. Investorer kan også bruke bevegelige gjennomsnitt for å identifisere støtte - eller motstandspunkter for å måle når prisene sannsynligvis vil endre retning. Ved å studere historiske handelsområder, opprettes støtte - og motstandspunkter hvor sikkerhetsprisen reverserer sin oppadgående eller nedadgående trend i fortiden. Disse punktene brukes da til å lage, kjøpe eller selge beslutninger. Dessverre er glidende gjennomsnitt ikke perfekte verktøy for å etablere trender, og de presenterer mange subtile, men betydelige, risikoer for investorer. Videre gjelder glidende gjennomsnitt ikke for alle typer bedrifter og næringer. Noen av de viktigste ulempene med bevegelige gjennomsnitt er: 1. Flytende gjennomsnitt trekker trender fra tidligere informasjon. De tar ikke hensyn til endringer som kan påvirke fremtidens ytelse for sikkerheten, for eksempel nye konkurrenter, høyere eller lavere etterspørsel etter produkter i bransjen, og endringer i selskapets ledelsesstruktur. 2. Ideelt sett vil et glidende gjennomsnitt vise en jevn forandring i prisen på en sikkerhet over tid. Dessverre går glidende gjennomsnitt ikke for alle bedrifter, spesielt for de i svært flyktige næringer eller de som er sterkt påvirket av dagens hendelser. Dette gjelder spesielt for oljeindustrien og høy spekulasjonsindustrien generelt. 3. Flytende gjennomsnitt kan spres over en tidsperiode. Dette kan imidlertid være problematisk fordi den generelle trenden kan endres vesentlig avhengig av tidsperioden som brukes. Kortere tidsrammer har mer volatilitet, mens lengre tidsrammer har mindre volatilitet, men tar ikke hensyn til nye endringer i markedet. Investorer må være forsiktig med hvilken tidsramme de velger, for å sikre at trenden er klar og relevant. 4. En pågående debatt er om det bør legges større vekt på de siste dagene i tidsperioden. Mange føler at nyere data bedre reflekterer hvilken retning sikkerheten beveger seg, mens andre føler at det gir noen dager mer vekt enn andre, forstyrrer utviklingen feil. Investorer som bruker ulike metoder for å beregne gjennomsnitt kan trekke helt forskjellige trender. (Lær mer i Simple vs Exponential Moving Average.) 5. Mange investorer hevder at teknisk analyse er en meningsløs måte å forutsi markedsadferd. De sier markedet har ingen minne og fortiden er ikke en indikator for fremtiden. Videre er det betydelig forskning for å få tilbake dette. For eksempel har Roy Nersesian gjennomført en studie med fem forskjellige strategier ved hjelp av bevegelige gjennomsnitt. Suksessraten for hver strategi varierte mellom 37 og 66. Denne undersøkelsen antyder at glidende gjennomsnitt bare gir resultater omtrent halvparten av tiden, noe som kan gjøre at de bruker et risikabelt proposisjon for effektivt timing av aksjemarkedet. 6. Verdipapirer viser ofte et syklisk mønster av oppførsel. Dette gjelder også for verktøyselskaper, som har jevn etterspørsel etter produkt fra år til år, men opplever sterke sesongmessige endringer. Selv om glidende gjennomsnitt kan bidra til å utjevne disse trendene, kan de også skjule det faktum at sikkerheten trender i et oscillerende mønster. (For å lære mer, se Hold øye med Momentum.) 7. Formålet med enhver trend er å forutse hvor prisen på et sikkerhetssystem vil være i fremtiden. Hvis en sikkerhet ikke trender i begge retninger, gir den ikke mulighet til å tjene på enten å kjøpe eller selge. Den eneste måten en investor kan være i stand til å profittere ville være å implementere en sofistikert, opsjonsbasert strategi som er avhengig av den gjenværende prisen stabil. Bottom Line Moving gjennomsnitt har blitt ansett som et verdifullt analytisk verktøy av mange, men for ethvert verktøy for å være effektivt må du først forstå funksjonen, når du skal bruke den og når du ikke skal bruke den. Faren som diskuteres her, indikerer at når gjennomsnittlig flytte ikke har vært et effektivt verktøy, for eksempel når det brukes med flyktige verdipapirer, og hvordan de kan overse visse viktige statistiske opplysninger, for eksempel sykliske mønstre. Det er også tvilsomt hvor effektive glidende gjennomsnitt er for nøyaktig å indikere prisutvikling. Gitt ulempene, kan bevegelige gjennomsnitt være et verktøy som er best brukt sammen med andre. Til slutt vil personlig erfaring være den ultimate indikatoren for hvor effektiv de egentlig er for din portefølje. (For mer, se Gjør Adaptive Moving Averages Lead To Better Results) En type skatt belastet kapitalgevinster pådratt av enkeltpersoner og selskaper. Kapitalgevinst er fortjenesten som en investor. En ordre om å kjøpe en sikkerhet til eller under en spesifisert pris. En kjøpsgrenseordre tillater handelsmenn og investorer å spesifisere. En IRS-regelen (Internal Revenue Service) som tillater straffefri uttak fra en IRA-konto. Regelen krever det. Det første salg av aksjer av et privat selskap til publikum. IPO er ofte utstedt av mindre, yngre selskaper som søker. Gjeldsgrad er gjeldsgrad som brukes til å måle selskapets økonomiske innflytelse eller en gjeldsgrad som brukes til å måle en person. En type kompensasjonsstruktur som hedgefondsforvaltere vanligvis bruker i hvilken del av kompensasjon som er ytelsesbasert. En tidsserie er en sekvens av observasjoner av en periodisk tilfeldig variabel. Eksempler er den månedlige etterspørselen etter et produkt, den årlige innkjøpsmannens påmelding i en avdeling ved universitetet og de daglige strømmen i en elv. Tidsserier er viktige for operasjonsforskning fordi de ofte er førerne av beslutningsmodeller. En beholdningsmodell krever estimater av fremtidige krav, en kursplanlegging og bemanningsmodell for en universitetsavdeling krever estimater for fremtidig studentinstrømning, og en modell for å gi advarsler til befolkningen i et elvområde krever estimater av elvestrømmer for nær fremtid. Tidsserieanalyse gir verktøy for å velge en modell som beskriver tidsseriene og bruker modellen til å prognose fremtidige hendelser. Modellering av tidsserien er et statistisk problem fordi observerte data blir brukt i beregningsmetode for å estimere koeffisientene til en antatt modell. Modeller antar at observasjoner varierer tilfeldig med en underliggende middelverdi som er en funksjon av tiden. På disse sidene begrenser vi oppmerksomheten til å bruke historiske tidsseriedata for å estimere en tidsavhengig modell. Metodene er hensiktsmessige for automatisk, kortsiktig prognose av ofte brukt informasjon der de underliggende årsakene til tidsvariasjon ikke endres markant i tide. I praksis blir prognosene avledet av disse metodene senere modifisert av menneskelige analytikere som inkorporerer informasjon som ikke er tilgjengelig fra de historiske dataene. Vårt primære formål i denne delen er å presentere ligningene for de fire prognosemetodene som brukes i Forecasting-tillegget: glidende gjennomsnitt, eksponensiell utjevning, regresjon og dobbel eksponensiell utjevning. Disse kalles utjevningsmetoder. Metoder som ikke vurderes inkluderer kvalitative prognoser, multiple regresjon og autoregressive metoder (ARIMA). De som er interessert i mer omfattende dekning, bør besøke nettstedet Forecasting Principles eller lese en av de mange gode bøkene om emnet. Vi brukte boken Forecasting. av Makridakis, Wheelwright og McGee, John Wiley ampsons, 1983. For å bruke Excel Exempler-arbeidsboken, må du ha prognosen for tilleggsprogram installert. Velg Relink-kommandoen for å etablere koblingene til tillegget. Denne siden beskriver modellene som brukes til enkel prognose og notasjonen som brukes til analysen. Denne enkleste prognosemetoden er den gjennomsnittlige prognosen i gjennomsnitt. Metoden er bare gjennomsnitt av de siste m-observasjonene. Det er nyttig for tidsserier med et sakte skiftende middel. Denne metoden vurderer hele fortiden i prognosen, men veier nyere erfaring tungere enn mindre nylig. Beregningene er enkle fordi bare estimatet av forrige periode og gjeldende data bestemmer det nye estimatet. Metoden er nyttig for tidsserier med et sakte skiftmiddel. Den bevegelige gjennomsnittlige metoden svarer ikke godt til en tidsserie som øker eller avtar med tiden. Her inkluderer vi en lineær trendbegrep i modellen. Regresjonsmetoden tilnærmer seg modellen ved å konstruere en lineær ligning som gir de minste firkanter som passer til de siste m-observasjonene. Gjennomsnittlig og eksponensiell utjevningsmodell Som et første skritt i å bevege seg utover gjennomsnittlige modeller, tilfeldige gangmodeller og lineære trendmodeller, ikke-soneformede mønstre og trender kan ekstrapoleres ved hjelp av en flytende gjennomsnitt eller utjevningsmodell. Den grunnleggende forutsetningen bak gjennomsnittlige og utjevningsmodeller er at tidsserien er lokalt stasjonær med et sakte varierende middel. Derfor tar vi et flytende (lokalt) gjennomsnitt for å anslå dagens verdi av gjennomsnittet, og deretter bruke det som prognosen for nær fremtid. Dette kan betraktes som et kompromiss mellom den gjennomsnittlige modellen og den tilfeldige-walk-uten-drift-modellen. Den samme strategien kan brukes til å estimere og ekstrapolere en lokal trend. Et glidende gjennomsnitt kalles ofte en quotsmoothedquot-versjon av den opprinnelige serien, fordi kortsiktig gjennomsnittsverdi medfører utjevning av støtene i den opprinnelige serien. Ved å justere graden av utjevning (bredden på det bevegelige gjennomsnittet), kan vi håpe å finne en slags optimal balanse mellom ytelsen til de gjennomsnittlige og tilfeldige turmodellene. Den enkleste typen gjennomsnittlig modell er. Enkel (likevektet) Flytende gjennomsnitt: Værvarselet for verdien av Y på tidspunktet t1 som er laget på tidspunktet t, er det enkle gjennomsnittet av de nyeste m-observasjonene: (Her og andre steder vil jeg bruke symbolet 8220Y-hat8221 til å stå for en prognose av tidsserien Y som ble gjort så tidlig som mulig ved en gitt modell.) Dette gjennomsnittet er sentrert ved period-t (m1) 2, noe som innebærer at estimatet av det lokale middel vil ha en tendens til å ligge bak den sanne verdien av det lokale gjennomsnittet med ca. (m1) 2 perioder. Således sier vi at gjennomsnittsalderen for dataene i det enkle glidende gjennomsnittet er (m1) 2 i forhold til den periode prognosen beregnes for: Dette er hvor lang tid prognosene vil ha til å ligge bak vendepunkter i dataene . For eksempel, hvis du er i gjennomsnitt de siste 5 verdiene, vil prognosene være ca 3 perioder sent i å svare på vendepunkter. Merk at hvis m1, den enkle glidende gjennomsnittlige (SMA) modellen er lik den tilfeldige turmodellen (uten vekst). Hvis m er veldig stor (sammenlignbar med lengden på estimeringsperioden), svarer SMA-modellen til den gjennomsnittlige modellen. Som med hvilken som helst parameter i en prognosemodell, er det vanlig å justere verdien av k for å oppnå den beste kvote kvoten til dataene, dvs. de minste prognosefeilene i gjennomsnitt. Her er et eksempel på en serie som ser ut til å vise tilfeldige svingninger rundt et sakte varierende middel. Først kan vi prøve å passe den med en tilfeldig walk-modell, noe som tilsvarer et enkelt bevegelige gjennomsnitt på 1 sikt: Den tilfeldige turmodellen reagerer veldig raskt på endringer i serien, men i så måte velger den mye av kvotenivået i data (tilfeldige svingninger) samt quotsignalquot (det lokale gjennomsnittet). Hvis vi i stedet prøver et enkelt glidende gjennomsnitt på 5 termer, får vi et smidigere sett med prognoser: Det 5-tiden enkle glidende gjennomsnittet gir betydelig mindre feil enn den tilfeldige turmodellen i dette tilfellet. Gjennomsnittsalderen for dataene i denne prognosen er 3 ((51) 2), slik at den har en tendens til å ligge bak vendepunktene med om lag tre perioder. (For eksempel ser det ut til at en nedtur har skjedd i perioden 21, men prognosene vender seg ikke til flere perioder senere.) Legg merke til at de langsiktige prognosene fra SMA-modellen er en horisontal rettlinje, akkurat som i tilfeldig gang modell. Således antar SMA-modellen at det ikke er noen trend i dataene. Mens prognosene fra den tilfeldige turmodellen ganske enkelt er lik den siste observerte verdien, er prognosene fra SMA-modellen lik et veid gjennomsnitt av de siste verdiene. De konfidensgrenser som beregnes av Statgraphics for de langsiktige prognosene for det enkle glidende gjennomsnittet, blir ikke større da prognoseperioden øker. Dette er åpenbart ikke riktig. Dessverre er det ingen underliggende statistisk teori som forteller oss hvordan konfidensintervallene skal utvide seg for denne modellen. Det er imidlertid ikke så vanskelig å beregne empiriske estimater av konfidensgrensene for lengre horisontprognoser. For eksempel kan du sette opp et regneark der SMA-modellen skulle brukes til å prognose 2 trinn foran, 3 trinn fremover, etc. i den historiske dataprøven. Du kan deretter beregne utvalgsstandardavvikene til feilene i hver prognosehorisont, og deretter konstruere konfidensintervaller for langsiktige prognoser ved å legge til og trekke ut multipler av riktig standardavvik. Hvis vi prøver et 9-sikt enkelt glidende gjennomsnitt, får vi enda jevnere prognoser og mer av en bremseeffekt: Gjennomsnittsalderen er nå 5 perioder (91) 2). Hvis vi tar et 19-årig glidende gjennomsnitt, øker gjennomsnittsalderen til 10: Legg merke til at prognosene nå faller bakom vendepunkter med ca 10 perioder. Hvilken mengde utjevning er best for denne serien Her er et bord som sammenligner feilstatistikken sin, også et gjennomsnitt på tre sikt: Modell C, 5-års glidende gjennomsnitt, gir den laveste verdien av RMSE med en liten margin over 3 term og 9-sikt gjennomsnitt, og deres andre statistikker er nesten identiske. Så, blant modeller med svært like feilstatistikk, kan vi velge om vi foretrekker litt mer respons eller litt mer glatt i prognosene. (Tilbake til toppen av siden.) Browns Simple Exponential Smoothing (eksponentielt vektet glidende gjennomsnitt) Den enkle glidende gjennomsnittsmodellen beskrevet ovenfor har den uønskede egenskapen som den behandler de siste k-observasjonene, like og fullstendig ignorerer alle foregående observasjoner. Intuitivt bør tidligere data diskonteres på en mer gradvis måte - for eksempel bør den siste observasjonen få litt mer vekt enn 2. siste, og den 2. siste skal få litt mer vekt enn den 3. siste, og så videre. Den enkle eksponensielle utjevning (SES) - modellen oppnår dette. La 945 betegne en quotsmoothing constantquot (et tall mellom 0 og 1). En måte å skrive modellen på er å definere en serie L som representerer dagens nivå (dvs. lokal middelverdi) av serien som estimert fra data til nå. Verdien av L på tidspunktet t beregnes rekursivt fra sin egen tidligere verdi slik: Således er den nåværende glattede verdien en interpolering mellom den forrige glattede verdien og den nåværende observasjonen, hvor 945 styrer nærheten til den interpolerte verdien til den nyeste observasjon. Forventningen for neste periode er bare den nåværende glatte verdien: Tilsvarende kan vi uttrykke neste prognose direkte i forhold til tidligere prognoser og tidligere observasjoner, i en hvilken som helst av de tilsvarende versjoner. I den første versjonen er prognosen en interpolasjon mellom forrige prognose og tidligere observasjon: I den andre versjonen blir neste prognose oppnådd ved å justere forrige prognose i retning av den forrige feilen med en brøkdel av 945. Er feilen gjort ved tid t. I den tredje versjonen er prognosen et eksponentielt vektet (dvs. nedsatt) glidende gjennomsnitt med rabattfaktor 1-945: Interpolasjonsversjonen av prognoseformelen er den enkleste å bruke hvis du implementerer modellen på et regneark: det passer inn i en enkeltcelle og inneholder cellehenvisninger som peker på forrige prognose, forrige observasjon og cellen der verdien av 945 er lagret. Merk at hvis 945 1 er SES-modellen tilsvarer en tilfeldig turmodell (uten vekst). Hvis 945 0 er SES-modellen ekvivalent med den gjennomsnittlige modellen, forutsatt at den første glattede verdien er satt lik gjennomsnittet. (Gå tilbake til toppen av siden.) Gjennomsnittsalderen for dataene i prognosen for enkel eksponensiell utjevning er 1 945 i forhold til perioden for prognosen beregnes. (Dette skal ikke være åpenbart, men det kan enkelt vises ved å vurdere en uendelig serie.) Derfor har den enkle, glidende gjennomsnittlige prognosen en tendens til å ligge bak vendepunktene med rundt 1 945 perioder. For eksempel, når 945 0,5 lag er 2 perioder når 945 0.2 lag er 5 perioder når 945 0,1 lag er 10 perioder, og så videre. For en gitt gjennomsnittlig alder (det vil si mengden lag), er prognosen for enkel eksponensiell utjevning (SES) noe bedre enn SMA-prognosen (Simple Moving Average) fordi den legger relativt mer vekt på den siste observasjonen - dvs. det er litt mer quotresponsivequot for endringer som oppstod i den siste tiden. For eksempel har en SMA-modell med 9 vilkår og en SES-modell med 945 0,2 begge en gjennomsnittlig alder på 5 for dataene i prognosene, men SES-modellen legger mer vekt på de siste 3 verdiene enn SMA-modellen og ved Samtidig er det ikke 8220forget8221 om verdier som er mer enn 9 år gamle, som vist i dette diagrammet. En annen viktig fordel ved SES-modellen over SMA-modellen er at SES-modellen bruker en utjevningsparameter som er kontinuerlig variabel, slik at den lett kan optimaliseres ved å bruke en quotsolverquot-algoritme for å minimere den gjennomsnittlige kvadratfeilen. Den optimale verdien av 945 i SES-modellen for denne serien viser seg å være 0,2961, som vist her: Gjennomsnittsalderen for dataene i denne prognosen er 10,2961 3,4 perioder, noe som ligner på et 6-sikt enkelt glidende gjennomsnitt. De langsiktige prognosene fra SES-modellen er en horisontal rett linje. som i SMA-modellen og den tilfeldige turmodellen uten vekst. Vær imidlertid oppmerksom på at konfidensintervallene som beregnes av Statgraphics, divergerer nå på en rimelig måte, og at de er vesentlig smalere enn konfidensintervallene for den tilfeldige turmodellen. SES-modellen antar at serien er noe mer forutsigbar enn den tilfeldige turmodellen. En SES-modell er faktisk et spesielt tilfelle av en ARIMA-modell. slik at den statistiske teorien om ARIMA-modeller gir et solid grunnlag for beregning av konfidensintervall for SES-modellen. Spesielt er en SES-modell en ARIMA-modell med en ikke-sesongforskjell, en MA (1) og ikke en konstant periode. ellers kjent som en quotARIMA (0,1,1) modell uten constantquot. MA (1) - koeffisienten i ARIMA-modellen tilsvarer mengden 1-945 i SES-modellen. For eksempel, hvis du passer på en ARIMA (0,1,1) modell uten konstant til serien analysert her, viser den estimerte MA (1) - koeffisienten seg å være 0,7029, som er nesten nøyaktig en minus 0,2961. Det er mulig å legge til antagelsen om en konstant lineær trend uten null som en SES-modell. For å gjøre dette oppgir du bare en ARIMA-modell med en ikke-sesongforskjell og en MA (1) - sikt med en konstant, dvs. en ARIMA-modell (0,1,1) med konstant. De langsiktige prognosene vil da ha en trend som er lik den gjennomsnittlige trenden observert over hele estimeringsperioden. Du kan ikke gjøre dette i forbindelse med sesongjustering, fordi sesongjusteringsalternativene er deaktivert når modelltypen er satt til ARIMA. Du kan imidlertid legge til en konstant langsiktig eksponensiell trend for en enkel eksponensiell utjevningsmodell (med eller uten sesongjustering) ved å bruke inflasjonsjusteringsalternativet i prognoseprosedyren. Den aktuelle kvoteringskvoten (prosentvekst) per periode kan estimeres som hellingskoeffisienten i en lineær trendmodell som er montert på dataene i forbindelse med en naturlig logaritme transformasjon, eller det kan være basert på annen uavhengig informasjon om langsiktige vekstutsikter . (Tilbake til toppen av siden.) Browns Lineær (dvs. dobbel) Eksponensiell utjevning SMA-modellene og SES-modellene antar at det ikke er noen trend av noe slag i dataene (som vanligvis er OK eller i det minste ikke altfor dårlig for 1- trinnvise prognoser når dataene er relativt støyende), og de kan modifiseres for å inkorporere en konstant lineær trend som vist ovenfor. Hva med kortsiktige trender Hvis en serie viser en varierende vekstnivå eller et syklisk mønster som skiller seg tydelig ut mot støyen, og hvis det er behov for å prognose mer enn 1 periode framover, kan estimering av en lokal trend også være et problem. Den enkle eksponensielle utjevningsmodellen kan generaliseres for å oppnå en lineær eksponensiell utjevning (LES) modell som beregner lokale estimater av både nivå og trend. Den enkleste tidsvarierende trendmodellen er Browns lineær eksponensiell utjevningsmodell, som bruker to forskjellige glatte serier som er sentrert på forskjellige tidspunkter. Forutsigelsesformelen er basert på en ekstrapolering av en linje gjennom de to sentrene. (En mer sofistikert versjon av denne modellen, Holt8217s, blir diskutert nedenfor.) Den algebraiske form av Brown8217s lineær eksponensiell utjevningsmodell, som den enkle eksponensielle utjevningsmodellen, kan uttrykkes i en rekke forskjellige, men liknende former. Denne standardmodellen er vanligvis uttrykt som følger: La S betegne den enkeltglattede serien som er oppnådd ved å anvende enkel eksponensiell utjevning til serie Y. Dvs. verdien av S ved period t er gitt av: (Husk at, under enkle eksponensiell utjevning, dette ville være prognosen for Y ved periode t1.) Lad deretter Squot betegne den dobbeltslettede serien oppnådd ved å anvende enkel eksponensiell utjevning (ved hjelp av samme 945) til serie S: Endelig prognosen for Y tk. for noe kgt1, er gitt av: Dette gir e 1 0 (det vil si lure litt, og la den første prognosen være den samme første observasjonen) og e 2 Y 2 8211 Y 1. hvoretter prognosene genereres ved å bruke ligningen ovenfor. Dette gir de samme monterte verdiene som formelen basert på S og S dersom sistnevnte ble startet med S 1 S 1 Y 1. Denne versjonen av modellen brukes på neste side som illustrerer en kombinasjon av eksponensiell utjevning med sesongjustering. Holt8217s Lineær eksponensiell utjevning Brown8217s LES-modell beregner lokale estimater av nivå og trend ved å utjevne de siste dataene, men det faktum at det gjør det med en enkelt utjevningsparameter, stiller en begrensning på datamønstrene som den kan passe: nivået og trenden er ikke tillatt å variere til uavhengige priser. Holt8217s LES-modellen løser dette problemet ved å inkludere to utjevningskonstanter, en for nivået og en for trenden. Til enhver tid t, som i Brown8217s modell, er det et estimat L t på lokalt nivå og et estimat T t av den lokale trenden. Her beregnes de rekursivt fra verdien av Y observert ved tid t og de forrige estimatene av nivået og trenden ved to likninger som gjelder eksponensiell utjevning til dem separat. Hvis estimert nivå og trend ved tid t-1 er L t82091 og T t-1. henholdsvis, da var prognosen for Y tshy som ville vært gjort på tidspunktet t-1, lik L t-1 T t-1. Når den faktiske verdien er observert, beregnes det oppdaterte estimatet av nivået rekursivt ved å interpolere mellom Y tshy og dens prognose, L t-1 T t 1, med vekt på 945 og 1- 945. Forandringen i estimert nivå, nemlig L t 8209 L t82091. kan tolkes som en støyende måling av trenden på tidspunktet t. Det oppdaterte estimatet av trenden beregnes deretter rekursivt ved å interpolere mellom L t 8209 L t82091 og det forrige estimatet av trenden, T t-1. ved bruk av vekter av 946 og 1-946: Fortolkningen av trend-utjevningskonstanten 946 er analog med den for nivåutjevningskonstanten 945. Modeller med små verdier på 946 antar at trenden bare endrer seg veldig sakte over tid, mens modeller med større 946 antar at det endrer seg raskere. En modell med en stor 946 mener at den fjerne fremtiden er veldig usikker, fordi feil i trendberegning blir ganske viktig når det regnes med mer enn en periode framover. (Tilbake til toppen av siden.) Utjevningskonstantene 945 og 946 kan estimeres på vanlig måte ved å minimere gjennomsnittlig kvadratfeil i de 1-trinns prognosene. Når dette gjøres i Statgraphics, viser estimatene seg å være 945 0.3048 og 946 0.008. Den svært små verdien av 946 betyr at modellen tar svært liten endring i trenden fra en periode til den neste, så i utgangspunktet prøver denne modellen å estimere en langsiktig trend. I analogi med begrepet gjennomsnittlig alder av dataene som brukes til å estimere det lokale nivået i serien, er gjennomsnittsalderen for dataene som brukes til estimering av lokal trenden, proporsjonal med 1 946, men ikke akkurat lik den . I dette tilfellet viser det seg å være 10 006 125. Dette er et svært nøyaktig tall, forutsatt at nøyaktigheten av estimatet av 946 er virkelig 3 desimaler, men det er av samme generelle størrelsesorden som prøvestørrelsen på 100, så denne modellen er i gjennomsnitt over ganske mye historie i estimering av trenden. Prognoseplanet nedenfor viser at LES-modellen anslår en litt større lokal trend i slutten av serien enn den konstante trenden som er estimert i SEStrend-modellen. Også den estimerte verdien på 945 er nesten identisk med den som oppnås ved å montere SES-modellen med eller uten trend, så dette er nesten den samme modellen. Nå ser disse ut som rimelige prognoser for en modell som skal estimere en lokal trend. Hvis du 8220eyeball8221 ser dette, ser det ut som om den lokale trenden har vendt nedover på slutten av serien. Hva har skjedd Parametrene til denne modellen har blitt estimert ved å minimere den kvadriske feilen på 1-trinns prognoser, ikke langsiktige prognoser, i hvilket tilfelle trenden gjør ikke en stor forskjell. Hvis alt du ser på er 1-trinns feil, ser du ikke det større bildet av trender over (si) 10 eller 20 perioder. For å få denne modellen mer i tråd med øyehals ekstrapoleringen av dataene, kan vi manuelt justere trendutjevningskonstanten slik at den bruker en kortere basislinje for trendestimering. Hvis vi for eksempel velger å sette 946 0,1, er gjennomsnittsalderen for dataene som brukes til å estimere den lokale trenden 10 perioder, noe som betyr at vi gjennomsnittsverdi trenden over de siste 20 perioder eller så. Here8217s hva prognosen tomten ser ut hvis vi setter 946 0,1 mens du holder 945 0.3. Dette ser intuitivt fornuftig ut på denne serien, selv om det er sannsynlig farlig å ekstrapolere denne trenden mer enn 10 perioder i fremtiden. Hva med feilstatistikken Her er en modell sammenligning for de to modellene vist ovenfor, samt tre SES-modeller. Den optimale verdien av 945. For SES-modellen er ca. 0,3, men tilsvarende resultater (med henholdsvis litt mer responstid) oppnås med 0,5 og 0,2. (A) Holts lineær eksp. utjevning med alfa 0,3048 og beta 0,008 (B) Holts lineær eksp. utjevning med alfa 0,3 og beta 0,1 (C) Enkel eksponensiell utjevning med alfa 0,5 (D) Enkel eksponensiell utjevning med alfa 0,3 (E) Enkel eksponensiell utjevning med alfa 0,2 Deres statistikk er nesten identisk, slik at vi virkelig kan velge på grunnlag av 1-trinns prognosefeil i dataprøven. Vi må falle tilbake på andre hensyn. Hvis vi sterkt tror at det er fornuftig å basere dagens trendoverslag på hva som har skjedd i løpet av de siste 20 perioder eller så, kan vi gjøre en sak for LES-modellen med 945 0,3 og 946 0,1. Hvis vi ønsker å være agnostiker om det er en lokal trend, kan en av SES-modellene være lettere å forklare og vil også gi mer mid-of-the-road prognoser for de neste 5 eller 10 periodene. (Tilbake til toppen av siden.) Hvilken type trend-ekstrapolering er best: Horisontal eller lineær Empirisk bevis tyder på at hvis dataene allerede er justert (om nødvendig) for inflasjon, kan det være uhensiktsmessig å ekstrapolere kortsiktig lineær trender veldig langt inn i fremtiden. Trender som tyder på i dag, kan løsne seg i fremtiden på grunn av ulike årsaker som forverring av produkt, økt konkurranse og konjunkturnedganger eller oppgang i en bransje. Av denne grunn utfører enkle eksponensielle utjevning ofte bedre ut av prøven enn det ellers kunne forventes, til tross for sin kvadratiske kvadratiske horisontal trend-ekstrapolering. Dampede trendmodifikasjoner av den lineære eksponensielle utjevningsmodellen brukes også i praksis til å introdusere en konservatismeddel i sine trendprognoser. Den demonstrede LES-modellen kan implementeres som et spesielt tilfelle av en ARIMA-modell, spesielt en ARIMA-modell (1,1,2). Det er mulig å beregne konfidensintervall rundt langsiktige prognoser produsert av eksponentielle utjevningsmodeller, ved å betrakte dem som spesielle tilfeller av ARIMA-modeller. (Pass på: ikke alle programmer beregner konfidensintervaller for disse modellene riktig.) Bredden på konfidensintervaller avhenger av (i) RMS-feilen i modellen, (ii) type utjevning (enkel eller lineær) (iii) verdien (e) av utjevningskonstanten (e) og (iv) antall perioder fremover du forutsetter. Generelt sprer intervallene raskere da 945 blir større i SES-modellen, og de sprer seg mye raskere når lineær snarere enn enkel utjevning brukes. Dette emnet blir diskutert videre i ARIMA-modellene i notatene. (Tilbake til toppen av siden.) Flytende gjennomsnitt - Enkle og eksponentielle flytende gjennomsnitt - Enkel og eksponentiell introduksjon Flytte gjennomsnitt øker prisdataene for å danne en trend-indikator. De forutsier ikke prisretning, men definerer snarere den nåværende retningen med et lag. Flytte gjennomsnittlig forsinkelse fordi de er basert på tidligere priser. Til tross for denne tøysen, beveger bevegelige gjennomsnitt en jevn prishandling og filtrerer ut støyen. De danner også byggesteinene for mange andre tekniske indikatorer og overlegg, for eksempel Bollinger Bands. MACD og McClellan Oscillator. De to mest populære typene av bevegelige gjennomsnittsverdier er Simple Moving Average (SMA) og Exponentential Moving Average (EMA). Disse bevegelige gjennomsnittsverdiene kan brukes til å identifisere retningen til trenden eller definere potensielle støtte - og motstandsnivåer. Here039s et diagram med både en SMA og en EMA på den: Simple Moving Average Calculation Et enkelt bevegelige gjennomsnitt er dannet ved å beregne gjennomsnittsprisen på en sikkerhet over et bestemt antall perioder. De fleste bevegelige gjennomsnitt er basert på sluttkurs. Et 5-dagers enkelt glidende gjennomsnitt er den fem dagers summen av sluttkurs dividert med fem. Som navnet antyder, er et glidende gjennomsnitt et gjennomsnitt som beveger seg. Gamle data blir droppet da nye data kommer til rådighet. Dette får gjennomsnittet til å bevege seg langs tidsskalaen. Nedenfor er et eksempel på et 5-dagers glidende gjennomsnitt som utvikler seg over tre dager. Den første dagen i det bevegelige gjennomsnittet dekker de siste fem dagene. Den andre dagen i glidende gjennomsnitt dråper det første datapunktet (11) og legger til det nye datapunktet (16). Den tredje dagen i det bevegelige gjennomsnittet fortsetter ved å slippe det første datapunktet (12) og legge til det nye datapunktet (17). I eksemplet ovenfor øker prisene gradvis fra 11 til 17 over totalt syv dager. Legg merke til at det bevegelige gjennomsnittet også stiger fra 13 til 15 over en tre-dagers beregningsperiode. Legg også merke til at hver glidende gjennomsnittsverdi ligger like under siste pris. For eksempel er det bevegelige gjennomsnittet for første dag 13 og siste pris 15. Prisene de foregående fire dagene var lavere, og dette medfører at det bevegelige gjennomsnittet går til lag. Eksponentiell Flytende Gjennomsnittlig Beregning Eksponentielle glidende gjennomsnitt reduserer forsinkelsen ved å bruke mer vekt til de siste prisene. Vektingen som brukes på den siste prisen, avhenger av antall perioder i glidende gjennomsnitt. Det er tre trinn for å beregne et eksponentielt glidende gjennomsnitt. Først beregner du det enkle glidende gjennomsnittet. Et eksponentielt glidende gjennomsnitt (EMA) må starte et sted slik at et enkelt glidende gjennomsnitt blir brukt som forrige periode039s EMA i den første beregningen. For det andre, beregne vektingsmultiplikatoren. Tredje, beregne eksponentielt glidende gjennomsnitt. Formelen nedenfor er for en 10-dagers EMA. Et 10-års eksponentielt glidende gjennomsnitt bruker en 18,18 vekting til den siste prisen. En 10-årig EMA kan også kalles en 18.18 EMA. En 20-årig EMA gjelder en vei på 9,52 til den siste prisen (2 (201) .0952). Legg merke til at vektingen for kortere tidsperiode er mer enn vektingen for lengre tidsperiode. Faktisk faller vekten halvparten hver gang den bevegelige gjennomsnittlige perioden fordobles. Hvis du vil ha en bestemt prosentandel for en EMA, kan du bruke denne formelen til å konvertere den til tidsperioder, og deretter angi verdien som EMA039-parameteren: Nedenfor er et regneark eksempel på et 10-dagers enkelt glidende gjennomsnitt og en 10- dag eksponentiell glidende gjennomsnitt for Intel. Enkle bevegelige gjennomsnitt er rett frem og krever liten forklaring. 10-dagers gjennomsnittet beveger seg ganske enkelt som nye priser blir tilgjengelige og gamle priser faller av. Det eksponentielle glidende gjennomsnittet begynner med den enkle glidende gjennomsnittsverdien (22,22) i den første beregningen. Etter den første beregningen tar den normale formelen over. Fordi en EMA begynner med et enkelt bevegelig gjennomsnittsmål, blir dens virkelige verdi ikke realisert før 20 eller så perioder senere. Med andre ord kan verdien på Excel-regnearket avvike fra diagramverdien på grunn av den korte tilbakekallingsperioden. Dette regnearket går bare tilbake 30 perioder, noe som betyr at påvirkning av det enkle glidende gjennomsnittet har hatt 20 perioder å forsvinne. StockCharts går tilbake minst 250 perioder (vanligvis mye lenger) for beregningene, slik at effektene av det enkle glidende gjennomsnittet i den første beregningen er fullstendig forsvunnet. Lagfaktoren Jo lengre det bevegelige gjennomsnittet, desto mer lagret. Et 10-dagers eksponensielt glidende gjennomsnitt vil krame prisene ganske tett og ta kort tid etter at prisene svinger. Kortflytende gjennomsnitt er som fartbåter - skumle og raske å forandre seg. I motsetning til dette, inneholder et 100-dagers glidende gjennomsnitt mange tidligere data som reduserer det. Lengre bevegelige gjennomsnitt er som havskipskip - sløv og sakte å forandre. Det tar en større og lengre prisbevegelse for et 100-dagers glidende gjennomsnitt for å bytte kurs. Tabellen over viser SampP 500 ETF med en 10-dagers EMA tett følgende priser og en 100-dagers SMA-sliping høyere. Selv med januar-februar-tilbakegangen holdt 100-dagers SMA kurset og gikk ikke ned. 50-dagers SMA passer et sted mellom 10 og 100 dagers glidende gjennomsnitt når det gjelder lagfaktoren. Enkel vs eksponentiell flytende gjennomsnitt Selv om det er klare forskjeller mellom enkle glidende gjennomsnitt og eksponentielle glidende gjennomsnitt, er det ikke nødvendigvis bedre enn det andre. Eksponentielle glidende gjennomsnitt har mindre forsinkelse og er derfor mer følsomme overfor de siste prisene - og de siste prisendringene. Eksponentielle glidende gjennomsnitt vil slå før enkle glidende gjennomsnitt. Enkle bevegelige gjennomsnitt, derimot, representerer et sant gjennomsnitt av priser for hele tidsperioden. Som sådan kan enkle bevegelige gjennomsnitt være bedre egnet til å identifisere støtte - eller motstandsnivåer. Flytte gjennomsnittlig preferanse avhenger av mål, analytisk stil og tidshorisont. Chartister bør eksperimentere med begge typer bevegelige gjennomsnitt samt forskjellige tidsrammer for å finne den beste passformen. Tabellen nedenfor viser IBM med 50-dagers SMA i rødt og 50-dagers EMA i grønt. Begge toppet i slutten av januar, men nedgangen i EMA var skarpere enn nedgangen i SMA. EMA dukket opp i midten av februar, men SMA fortsatte å bli lavere til slutten av mars. Legg merke til at SMA dukket opp over en måned etter EMA. Lengder og tidsrammer Lengden på det bevegelige gjennomsnittet avhenger av de analytiske målene. Kortvarige gjennomsnitt (5-20 perioder) passer best for kortsiktige trender og handel. Chartister interessert i langsiktige trender ville velge lengre bevegelige gjennomsnitt som kan utvide 20-60 perioder. Langsiktig investorer vil foretrekke å flytte gjennomsnitt med 100 eller flere perioder. Noen bevegelige gjennomsnittlige lengder er mer populære enn andre. 200-dagers glidende gjennomsnitt er kanskje den mest populære. På grunn av lengden er dette klart et langsiktig glidende gjennomsnitt. Deretter er det 50-dagers glidende gjennomsnittet ganske populært for den langsiktige trenden. Mange diagrammer bruker de 50-dagers og 200-dagers glidende gjennomsnittene sammen. Kortsiktig, et 10-dagers glidende gjennomsnitt var ganske populært tidligere, fordi det var lett å beregne. Man lagde bare tallene og flyttet desimaltegnet. Trend Identification De samme signalene kan genereres ved hjelp av enkle eller eksponentielle glidende gjennomsnitt. Som nevnt ovenfor er preferansen avhengig av hver enkelt person. Disse eksemplene nedenfor vil bruke både enkle og eksponentielle glidende gjennomsnitt. Begrepet glidende gjennomsnitt gjelder både enkle og eksponentielle glidende gjennomsnitt. Retningen av det bevegelige gjennomsnittet gir viktig informasjon om priser. Et stigende glidende gjennomsnitt viser at prisene generelt øker. Et fallende glidende gjennomsnitt indikerer at prisene i gjennomsnitt faller. Et stigende langsiktig glidende gjennomsnitt reflekterer en langsiktig opptrend. Et fallende langsiktig glidende gjennomsnitt reflekterer en langsiktig nedtrend. Tabellen over viser 3M (MMM) med et 150-dagers eksponensielt glidende gjennomsnitt. Dette eksempelet viser hvor godt bevegelige gjennomsnittsverdier fungerer når trenden er sterk. Den 150-dagers EMA avslått i november 2007 og igjen i januar 2008. Legg merke til at det tok 15 tilbakegang å reversere retningen av dette bevegelige gjennomsnittet. Disse forsinkende indikatorene identifiserer trendendringer som de oppstår (i beste fall) eller etter at de oppstår (i verste fall). MMM fortsatte ned til mars 2009 og økte deretter 40-50. Legg merke til at 150-dagers EMA ikke viste seg før etter denne bølgen. Når det gjorde det, fortsatte MMM høyere de neste 12 månedene. Flytte gjennomsnitt arbeider briljant i sterke trender. Double Crossovers To bevegelige gjennomsnitt kan brukes sammen for å generere crossover-signaler. I teknisk analyse av finansmarkedene. John Murphy kaller dette den dobbelte crossover-metoden. Dobbeltoverganger innebærer et relativt kort glidende gjennomsnitt og et relativt langt bevegelige gjennomsnitt. Som med alle bevegelige gjennomsnitt, definerer den generelle lengden på det bevegelige gjennomsnittet tidsrammen for systemet. Et system som bruker en 5-dagers EMA og 35-dagers EMA, vil bli ansett som kortsiktige. Et system som bruker en 50-dagers SMA og 200-dagers SMA, vil bli ansett på mellomlang sikt, kanskje til og med på lang sikt. Et kystovergang skjer når kortere bevegelige gjennomsnittsværdier krysser over lengre bevegelige gjennomsnitt. Dette er også kjent som et gyldent kors. Et bearish crossover oppstår når kortere bevegelige gjennomsnitt krysser under lengre bevegelige gjennomsnitt. Dette er kjent som et dødt kryss. Flytte gjennomsnittsoverganger gir relativt sent signaler. Tross alt har systemet to forsinkende indikatorer. Jo lengre bevegelige gjennomsnittsperioder, desto større er lagringen i signalene. Disse signalene fungerer bra når en god trend tar tak. Imidlertid vil et glidende gjennombruddssystem produsere mange whipsaws i fravær av en sterk trend. Det er også en trippel crossover metode som involverer tre bevegelige gjennomsnitt. Igjen genereres et signal når det korteste bevegelige gjennomsnittet krysser de to lengre bevegelige gjennomsnittene. Et enkelt tredelt crossover-system kan innebære 5-dagers, 10-dagers og 20-dagers glidende gjennomsnitt. Tabellen over viser Home Depot (HD) med en 10-dagers EMA (grønn prikket linje) og 50-dagers EMA (rød linje). Den svarte linjen er den daglige lukkingen. Å bruke en glidende gjennomsnittsovergang ville ha resultert i tre whipsaws før du fikk en god handel. Den 10-dagers EMA brøt under 50-dagers EMA i slutten av oktober (1), men dette var ikke lenge da 10-dagene flyttet tilbake over midten av november (2). Dette krysset varet lengre, men neste bearish crossover i januar (3) skjedde nær prisnivået i slutten av november, noe som resulterte i en annen whipsaw. Dette bearish krysset varede ikke lenge da 10-dagers EMA flyttet tilbake over 50-dagen noen dager senere (4). Etter tre dårlige signaler forløste det fjerde signalet et sterkt trekk når aksjene økte over 20. Det er to takeaways her. For det første er crossovers utsatt for whipsaw. Et pris - eller tidsfilter kan brukes for å forhindre whipsaws. Traders kan kreve crossover til siste 3 dager før du handler eller krever at 10-dagers EMA skal flytte over 50-dagers EMA med en viss mengde før du handler. For det andre kan MACD brukes til å identifisere og kvantifisere disse kryssene. MACD (10,50,1) viser en linje som representerer forskjellen mellom de to eksponentielle glidende gjennomsnittene. MACD blir positiv under et gyldent kors og negativt under et dødt kryss. Prosentpris Oscillatoren (PPO) kan brukes på samme måte som prosentandeler. Vær oppmerksom på at MACD og PPO er basert på eksponentielle glidende gjennomsnitt og stemmer ikke overens med enkle glidende gjennomsnitt. Dette diagrammet viser Oracle (ORCL) med 50-dagers EMA, 200-dagers EMA og MACD (50,200,1). Det var fire bevegelige gjennomsnittsoverskridelser over en 12-årig periode. De første tre resulterte i whipsaws eller dårlige handler. En vedvarende trend begynte med fjerde crossover som ORCL avansert til midten av 20-tallet. Nok en gang jobber glidende gjennomsnittsoverganger godt når trenden er sterk, men produserer tap i fravær av en trend. Prisoverskridelser Flytte gjennomsnitt kan også brukes til å generere signaler med enkle prisoverskridelser. Et bullish signal genereres når prisene går over det bevegelige gjennomsnittet. Et bearish signal genereres når prisene flytter under det bevegelige gjennomsnittet. Prisoverskridelser kan kombineres for å handle innenfor den større trenden. Det lengre bevegelige gjennomsnittet setter tonen for den større trenden, og det kortere glidende gjennomsnittet brukes til å generere signalene. Man vil se etter bullish prisoverganger bare når prisene allerede er over det lengre bevegelige gjennomsnittet. Dette ville være handel i harmoni med den større trenden. For eksempel, hvis prisen ligger over 200-dagers glidende gjennomsnitt, vil kartleggere bare fokusere på signaler når prisen beveger seg over 50-dagers glidende gjennomsnitt. Åpenbart vil et trekk under 50-dagers glidende gjennomsnitt forutse et slikt signal, men slike bearish kryss vil bli ignorert fordi den større trenden er oppe. Et bearish kryss ville bare foreslå en tilbaketrekking i en større opptrinn. Et kryss tilbake over 50-dagers glidende gjennomsnitt ville signalere en oppgang i prisene og fortsettelsen av den store opptrenden. Neste diagram viser Emerson Electric (EMR) med 50-dagers EMA og 200-dagers EMA. Aksjen flyttet over og holdt over 200-dagers glidende gjennomsnitt i august. Det var dips under 50-dagers EMA tidlig i november og igjen tidlig i februar. Prisene flyttet raskt over 50-dagers EMA for å gi bullish signaler (grønne piler) i harmoni med større opptrinn. MACD (1,50,1) vises i indikatorvinduet for å bekrefte priskryss over eller under 50-dagers EMA. Den 1-dagers EMA er lik sluttkurs. MACD (1,50,1) er positiv når lukkingen er over 50-dagers EMA og negativ når lukkingen er under 50-dagers EMA. Støtte og motstand Flytte gjennomsnitt kan også fungere som støtte i en uptrend og motstand i en downtrend. En kortsiktig opptrend kan finne støtte nær 20-dagers enkeltflytende gjennomsnitt, som også brukes i Bollinger Bands. Et langsiktig opptrend kan finne støtte nær det 200-dagers enkle glidende gjennomsnittet, som er det mest populære langsiktige glidende gjennomsnittet. Faktisk kan 200-dagers glidende gjennomsnitt gi støtte eller motstand bare fordi den er så mye brukt. Det er nesten som en selvoppfyllende profeti. Figuren over viser NY Composite med det 200-dagers enkle glidende gjennomsnittet fra midten av 2004 til slutten av 2008. 200-dagene ga støtte mange ganger under forskudd. Når trenden reverserte med en dobbel toppstøt, virket det 200-dagers glidende gjennomsnittet som motstand rundt 9500. Forvent ikke eksakte støtte - og motstandsnivåer fra bevegelige gjennomsnitt, spesielt lengre bevegelige gjennomsnitt. Markeder er drevet av følelser, noe som gjør dem utsatt for overskudd. I stedet for eksakte nivåer kan bevegelige gjennomsnittsverdier brukes til å identifisere støtte - eller motstandssoner. Konklusjoner Fordelene ved å bruke bevegelige gjennomsnitt må veies mot ulempene. Flytte gjennomsnitt er trenden som følger eller forsinker, indikatorer som alltid vil være et skritt bakover. Dette er ikke nødvendigvis en dårlig ting skjønt. Tross alt er trenden din venn, og det er best å handle i retning av trenden. Flytte gjennomsnitt sikrer at en næringsdrivende er i tråd med den nåværende trenden. Selv om trenden er din venn, legger verdipapirer mye tid i handelsområder, noe som gjør flytteverdier ineffektive. En gang i en trend vil glidende gjennomsnitt holde deg i, men også gi sent signal. Don039t forventer å selge på toppen og kjøpe på bunnen ved hjelp av bevegelige gjennomsnitt. Som med de fleste tekniske analyseverktøy, bør bevegelige gjennomsnitt ikke brukes alene, men i forbindelse med andre komplementære verktøy. Chartister kan bruke bevegelige gjennomsnitt for å definere den overordnede trenden og deretter bruke RSI til å definere overkjøpte eller oversolgte nivåer. Legge til bevegelige gjennomsnitt til StockCharts-diagrammer Flytte gjennomsnitt er tilgjengelig som en prisoverleggsfunksjon på SharpCharts arbeidsbenk. Med rullegardinmenyen Overlays kan brukerne velge enten et enkelt glidende gjennomsnitt eller et eksponentielt glidende gjennomsnitt. Den første parameteren brukes til å angi antall tidsperioder. En valgfri parameter kan legges til for å spesifisere hvilket prisfelt som skal brukes i beregningene - O for Åpen, H for Høy, L for Lav og C for Lukk. Et komma brukes til å skille mellom parametere. En annen valgfri parameter kan legges til for å skifte de bevegelige gjennomsnittene til venstre (tidligere) eller høyre (fremtidige). Et negativt tall (-10) ville skifte det bevegelige gjennomsnittet til venstre 10 perioder. Et positivt tall (10) ville skifte det bevegelige gjennomsnittet til høyre 10 perioder. Flere bevegelige gjennomsnitt kan overlappes prisplottet ved ganske enkelt å legge til en annen overleggslinje til arbeidsbenken. StockCharts medlemmer kan endre farger og stil for å skille mellom flere bevegelige gjennomsnitt. Når du har valgt en indikator, åpner du Avanserte alternativer ved å klikke på den lille grønne trekant. Avanserte alternativer kan også brukes til å legge til et glidende gjennomsnittlig overlegg til andre tekniske indikatorer som RSI, CCI og Volume. Klikk her for et live diagram med flere forskjellige bevegelige gjennomsnitt. Bruke Flytte Gjennomsnitt med StockCharts-skanninger Her er noen prøve-skanninger som StockCharts-medlemmer kan bruke til å skanne etter ulike bevegelige gjennomsnittlige situasjoner: Bullish Moving Average Cross: Denne skanningen ser etter aksjer med et stigende 150-dagers enkelt glidende gjennomsnitt og et bullish kryss av 5 - dag EMA og 35-dagers EMA. Det 150-dagers glidende gjennomsnittet stiger så lenge det handler over nivået for fem dager siden. Et bullish kryss oppstår når 5-dagers EMA beveger seg over 35-dagers EMA på over gjennomsnittet. Bearish Moving Average Cross: Denne skanningen ser etter aksjer med et fallende 150-dagers enkelt glidende gjennomsnitt og et bearish kryss av 5-dagers EMA og 35-dagers EMA. Det 150-dagers glidende gjennomsnittet faller så lenge det handler under nivået for fem dager siden. Et bearish kryss oppstår når 5-dagers EMA beveger seg under 35-dagers EMA på over gjennomsnittet. Videre studie John Murphy039s bok har et kapittel viet til bevegelige gjennomsnitt og deres ulike bruksområder. Murphy dekker fordeler og ulemper ved å flytte gjennomsnitt. I tillegg viser Murphy hvordan bevegelige gjennomsnitt arbeider med Bollinger Bands og kanalbaserte handelssystemer. Teknisk analyse av finansmarkedene John Murphy

No comments:

Post a Comment